MPLS - A Choice of Signaling Protocol
نویسندگان
چکیده
Multi Protocol Label Switching (MPLS) is a core networking technology that operates essentially in between Layers 2 and 3 of the OSI model; for this reason, MPLS has been referred to as operating at Layer 2.5. MPLS can overlay existing technologies such as ATM (Asynchronous Transfer Mode) or Frame Relay, or it can operate in an entirely IP native environment; this can allow users to take advantage of existing CPE (Customer Premises Equipment) while making a move towards converging all network traffic, such as data, video and voice, at a pace that users can accommodate and afford. MPLS provides its users a number of advantageous features such as traffic engineering, network convergence, failure protection, and the ability to guarantee Quality of Service (QoS) over IP. MPLS Vans take advantage of the inherent characteristics of MPLS to provide secure data networking, typically for business users, in conjunction with other VPN technologies to help increase scalability while keeping costs at a manageable level. This paper should help to provide a basic understanding of MPLS technology, its advantages and limitations, and its application as an IP VPN. This paper covers MPLS, Label Distribution, Explicit Routes, Constrained Routes, Resource Reservation, Traffic Engineering, Service Level Contracts, Virtual Private Networks and Modern Networks needs. Our Next papers will focus on MPLS Traffic Engineering Overview and Differences and Similarities between RSVP and CR-LDP.
منابع مشابه
Comparative Analysis of MPLS Signaling Protocols
MPLS is the pioneer in Service Provider Networks. Every service provider use MPLS in its core network for fast label switching. This paper explains MPLS and its signaling protocols i.e. LDP, CR-LDP, RSVP, RSVP-TE. This paper explains every signaling protocol that is used in Multiprotocol Label Switching environment. This paper explains differences between MPLS signaling protocols on the basis o...
متن کاملAn MPLS-based Quality of Service Architecture for Heterogeneous Networks
(ABSTRACT) This thesis proposes a multi-protocol label switching (MPLS)-based architecture to provide quality of service (QoS) for both internet service provider (ISP) networks and backbone Internet Protocol (IP) networks that are heterogeneous in nature. Heterogeneous networks are present due to the use of different link-layer mechanisms in the current Internet. Copper-based links, fiber-based...
متن کاملOPNET Simulation of SIP Based IP Telephony over MPLS Network
The next generation communication system will provide high quality multimedia service in a more flexible and intelligent manner. In this paper, we propose a new SIP over MPLS network architecture to achieve this goal. To integrate SIP protocol with the traffic engineering function of MPLS network seamlessly and facilitate SIP call setup, the SIP-MPLS traffic aggregation server (TA server) is hi...
متن کاملAn efficient and flexible MPLS signaling framework for mobile networks
Multiprotocol Label Switching (MPLS) has gained momentum in recent years as an effective tool to provide Quality of Service (QoS) in a variety of networks. This has in turn created active interest in the area of recovery in MPLS based networks. A number of recovery schemes for MPLS domains have been proposed in recent years. However, the current schemes lack support for recovery in dynamic netw...
متن کاملRFC 6383 RVSP - TE Data Label Switch Update
The Resource Reservation Protocol (RSVP) has been extended to support Traffic Engineering (TE) in Multiprotocol Label Switching (MPLS) and Generalized MPLS (GMPLS) networks. The protocol enables signaling exchanges to establish Label Switched Paths (LSPs) that traverse nodes and link to provide end-to-end data paths. Each node is programmed with "cross-connect" information as the signaling mess...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012